Uciążliwość zapachowa/Węch człowieka/Receptory węchowe i kodowanie zapachu: Różnice pomiędzy wersjami

Usunięta treść Dodana treść
m dr. techn.
m drobne redakcyjne
Linia 40:
 
=== Receptory GCPR ===
Zgodnie ze współczesnym stanem wiedzy [[w:Chemoreceptor|chemoreceptory]], czyli receptory reagujące na bodźce chemiczne (np. [[w:hormon|hormony]], bodźce węchowe i smakowe) są najliczniejszą grupą receptorów błonowych. Ich struktura jest zakodowana w [[w:gen|genach]] wszystkich organizmów żywych. Są to często białka posiadające siedem [[w:Helisa alfa|α-helikalnych]] fragmentów, przenikających przez błonę komórkową (7 domen transmembranowych, symbol 7TM). Należą do białek sprzężonych z [[w:białko G|białkiem G]], oznaczanych symbolem [[w:receptory sprzężone z białkami G|GPCR]] (''G Protein-Coupled Receptor'').
[[Plik:protein 7 domen.svg|thumb|200px|Schemat [[w:Białka receptorowe|receptora błonowego]] z siedmioma domenami ([[w:Helisa alfa|helisami]]) transbłonowymi (7TM)]]
[[Plik:ORs and GP.svg|thumb|200px|Schemat pobudzenia receptora OR przez cząsteczkę odoranta z uwolnieniem podjednostki α [[w:białko G|białka G]]{{r|Ryan McGraf-Hill}}]]
 
Zgodnie ze współczesnym stanem wiedzy [[w:Chemoreceptor|chemoreceptory]], czyli receptory reagujące na bodźce chemiczne (np. [[w:hormon|hormony]], bodźce węchowe i smakowe) są najliczniejszą grupą receptorów błonowych. Ich struktura jest zakodowana w [[w:gen|genach]] wszystkich organizmów żywych. Są to często białka posiadające siedem [[w:Helisa alfa|α-helikalnych]] fragmentów, przenikających przez błonę komórkową (7 domen transmembranowych, symbol 7TM). Należą do białek sprzężonych z [[w:białko G|białkiem G]], oznaczanych symbolem [[w:receptory sprzężone z białkami G|GPCR]] (''G Protein-Coupled Receptor'').
 
Białko G jest zbudowane z trzech podjednostek: ''α'', ''β'' i ''γ''. Do podjednostki ''α'' przyłącza się [[w:Guanozynodifosforan|guanozynodifosforan (GDP)]]. Skutkiem pobudzenia chemorereceptora jest [[w:fosforylacja|fosforylacja]] GDP. Powstający [[w:Guanozynotrifosforan|guanozynotrifosforan (GTP)]] jest uwalniany do [[w:cytoplazma|cytoplazmy]], gdzie uczestniczy w procesach otwierania [[w:kanał jonowy|kanałów jonowych]] w błonie neuronu ([[w:biochemiczna kaskada|biochemiczna kaskada]]). Otwarcie kanałów umożliwia [[w:dyfuzja|dyfuzję prostą]] jonów potasu z wnętrza na zewnątrz komórki i jonów sodu w przeciwnym kierunku, co powoduje depolaryzację jej błony. Powstający [[w:potencjał czynnościowy|potencjał czynnościowy]] przemieszcza się wzdłuż [[w:neuryt|neurytu]] do [[w:synapsa|synapsy]]. Uwalnia tu do szczeliny synaptycznej neurotransmitery, które mogą wywołać potencjał czynnościowy w błonie sąsiedniego neuronu (neuron II rzędu).
<gallery widths=300 heights=200 perrow=2 caption=>
[[Plik:protein 7 domen.svg|thumb|200px|Schemat [[w:Białka receptorowe|receptora błonowego]] z siedmioma domenami ([[w:Helisa alfa|helisami]]) transbłonowymi (7TM)]]
[[Plik:ORs and GP.svg|thumb|200px|Schemat pobudzenia receptora OR przez cząsteczkę odoranta z uwolnieniem podjednostki α [[w:białko G|białka G]]{{r|Ryan McGraf-Hill}}]]
</gallery>
 
=== Odkrycie rodziny OR ===
[[Plik:PCR pl.svg|thumb|200px|Schemat [[w:reakcja łańcuchowa polimerazy|łańcuchowej reakcji polimerazy]] (PCR):<br />1. [[w:Denaturacja DNA|Denaturacja]] w 96 °C <br /> 2. Wiązanie [[w:RNA starterowy|starterów]] w 68 °C <br /> 3. Synteza nici [[w:zasada komplementarności|komplementarnej]] w 72 °C (P – [[w:polimerazy|polimeraza]])]]
 
[[w:Linda B. Buck|Linda B. Buck]]{{r|L.Buck Nobel lecture}} i [[w:Richard Axel|Richard Axel]]{{r|R.Axel Nobel lecture}} otrzymali Nagrodę Nobla w dziedzinie fizjologii i medycyny w roku 2004 za odkrycia dokonane w wyniku badań rozpoczętych w roku 1985. Według L.B. Buck inspiracją jej badań była opublikowana w roku 1985 praca J. Pevsnera i współpracowników{{r|L.B.Buck_Cell2004}}.
Autorzy pracy badali powinowactwo nabłonka węchowego wołu i szczura do 2-izobutylo-3-[3H]metoksypirazyny (silny zapach papryki). Stwierdzono, że odorant jest specyficznie i silnie wiązany w nabłonku węchowym (nie zaobserwowano tego zjawiska w 11 innych badanych tkankach). Jego [[w:powinowactwo chemiczne|powinowactwo]] do nabłonka węchowego szczura jest 9 razy większe niż do nabłonka innych części [[w:układ oddechowy|układu oddechowego]]. Z nabłonka wołu wyizolowano białko wiążące pirazyny, które stanowi około 1% całkowitego białka rozpuszczalnego. Zbadano jego strukturę, wskazując dwa miejsca wiązania odoranta. Wykazano również, że powinowactwo tego białka do homologicznej serii pirazyn jest skorelowane z [[w:próg węchowej wyczuwalności|progami wyczuwalności ich zapachu]] przez człowieka. Wyciągnięto wniosek, że białko odgrywa istotną fizjologiczną rolę w procesie percepcji zapachu{{r|Pevsner 1985}}.
 
Biorąc pod uwagę ogromną liczebność rozpoznawanych zapachów (> 10 tys.) Linda Buck założyła, że{{r|L.Buck Nobel lecture}}{{r|Białaczewski}}{{r|Skangiel-Kramska}}:
* w nabłonku węchowym występują liczne białka, kodowane przez dużą rodzinę genów
* białka kodowane przez te geny wiążą różne cząsteczki odorantów
* geny tych białek ulegają selektywnej [[w:ekspresja genu|ekspresji]] w neuronach narządu węchu
Linia 67 ⟶ 68:
Uzyskano 64 frakcje łańcuchów DNA, wśród których spodziewano się zidentyfikować poszukiwaną rodzinę genów. [[w:Sekwencja nukleotydów|Sekwencja nukleotydów]], ustalona dla 10 łańcuchów DNA z jednej z tych frakcji, odpowiadała oczekiwanym [[w:sekwencja aminokwasów|pierwszorzędowym strukturom białek]]. Wyznaczona sekwencja aminokwasów w tych białkach wskazywała, że wyodrębnione łańcuchy DNA są genami białek z siedmioma domenami [[w:hydrofobowość|hydrofobowymi]] (o zmiennej sekwencji aminokwasów), tworzącymi α-helisy ([[w:struktura drugorzędowa|struktura drugorzędowa]] analogiczna do struktury znanych GPCR). Wyniki pracy opublikowano w roku 1991{{r|Białaczewski}}{{r|Buck Axel 1991}}.
 
Korzystając z bazy danych, zgromadzonych w czasie realizacji „[[w:Projekt poznania ludzkiego genomu|Projektu poznania ludzkiego genomu]]” (ang. ''Human Genome Project'', HGP), zidentyfikowano 636 analogicznych genów o długości ok. 1000 par zasad. Aktywność wykazuje tylko 339 z nich (ponad 2% z ok. 30 tys. wszystkich genów w [[w:genom człowieka|genomie]]), a pozostałe są pseudogenami, które nie ulegają ekspresji (u zwierząt udział pseudogenów jest mniejszy)<ref group="uwaga">Poszukiwania OR nie są zakończone, co sprawia, że w piśmiennictwie nie ma całkowitej zgodności danych. W czasie wykładu wygłoszonego w czasie uroczystości nadania Nagrody Nobla, Linda B. Buck wymieniła wartości [http://nobelprize.org/nobel_prizes/medicine/laureates/2004/buck-slides.pdf (zobacz: slajd 16)]: <br />* człowiek: liczba genów aktywnych: 363, liczba pseudogenów: 275 (43%)<br />* mysz: liczba genów aktywnych: 910, liczba pseudogenów: 299 (25%).</ref>.
Geny receptorów węchowych występują w największej ilości w [[w:chromosom 11|chromosomie 11]] (318 genów), nie występują w chromosomach [[w:chromosom 8|8]], [[w:chromosom 20|20]] i [[w:chromosom Y|Y]]{{r|OR na en wiki}}.
 
Linia 74 ⟶ 75:
=== System węchowy ===
[[Plik:Green fluorescent protein expressed in ciliated olfactory sensory neurons.jpg|thumb|200px|Określenie drogi sygnałów od zakończeń nerwów węchowych do kłębuszków opuszki umożliwiły [[w:białko zielonej fluorescencji|białka zielonej fluorescencji]]]]
[[Plik:Olfactory system.svg|thumb|200px|System węchowy człowieka <br />1. [[Uciążliwość zapachowa/Węch człowieka/AnatomiaElementy anatomii narządu węchu|opuszka węchowa]]; 2. komórki mitralne (II neurony [[w:droga węchowa|drogi węchowej]]; 3. [[w:kość sitowa|kość sitowa]] 4. [[w:nabłonek węchowy|nabłonek węchowy]]; 5. „kłębuszki” opuszki węchowej; 6. komórki węchowe (receptory)]]
[[Plik:Olfactory recept principle.svg|thumb|200px|Zasada dekodowania zapachu odorantów, wiązanych przez różne receptory<ref group="uwaga">Zobacz też: slajdy z wykładu Lindy B. Buck, wygłoszonego w czasie uroczystości nadania Nagrody Nobla, [http://nobelprize.org/nobel_prizes/medicine/laureates/2004/buck-slides.pdf (slajd 26)].</ref> <br />Cechy kształtu pięciu różnych receptorów oraz cząsteczek odorantów reprezentują różne właściwości chemiczne i stereochemiczne, decydujące o wzajemnym powinowactwie. W nabłonku węchowym człowieka znajduje się 339 różnych białek receptorowych OR w milionach komórek nabłonka węchowego. Liczba wzorców pobudzenia tych komórek jest niemal nieograniczona]]
[[Plik:Model smell recogn.svg|thumb|200px|Model przekazywania sygnałów o zapachu z nabłonka węchowego do ośrodka korowego<ref group="uwaga">Zobacz też: slajdy z wykładu Lindy B. Buck, wygłoszonego w czasie uroczystości nadania Nagrody Nobla, [http://nobelprize.org/nobel_prizes/medicine/laureates/2004/buck-slides.pdf (slajd 46 i 47)].</ref>]]
 
Podstawami koncepcji systemu węchowego są{{r|Białaczewski}}{{r|Skangiel-Kramska}}{{r|Obrębowski}}{{r|Ponikowska}}:
Linia 82:
* wykazanie, że poszczególne OR ulegają selektywnej ekspresji w poszczególnych komórkach [[w:narząd|narządów]] zmysłu węchu, przy czym w jednym neuronie ulega ekspresji jeden rodzaj OR
* sprawdzenie, jak poszczególne OR reagują na różne związki chemiczne (odoranty)
* zbadanie sposobu interpretacji sygnałów o pobudzeniu receptorów (neurony I rzędu) na wyższych piętrach [[w:układ nerwowy#analizatory wrażeń zmysłowych|analizatora wrażenia zmysłowego]] (zobacz: [[w:droga węchowa|droga węchowa]], [[w:nerw węchowy|erw węchowy]])
 
Potwierdzenie spodziewanej lokalizacji receptorów (selektywnej ekspresji genów OR) uzyskano wykorzystując metodę znakowania receptorów [[w:białko zielonej fluorescencji|z użyciem GFP]] oraz technik [[w:inżynieria genetyczna|inżynierii genetycznej]] i [[w:klonowanie|klonowania]]. Otrzymano zdjęcia, np. przekrojów tkanki nerwowej [[w:Organizm zmodyfikowany genetycznie|transgenicznych]] myszy, na których wyraźną zieloną [[w:fluorescencja|fluorescencję]] (świadczącą o obecności białek OR) wykazują komórki nabłonka węchowego i opuszki{{r|Białaczewski}}{{r|Skangiel-Kramska}}.
Linia 88:
Techniki inżynierii genetycznej zastosowano również czasie badań roli kłębuszków (''glomerule'') opuszki węchowej w interpretacji sygnałów węchowych. Opuszka człowieka i innych ssaków (''bulbus olfactorius'', BO) mieści się bezpośrednio nad blaszką sitową [[w:kość sitowa|kości sitowej]] (''lamina cribrosa ossis ethmoidale''), stanowiącą sklepienie jamy nosowej. Przez blaszkę przenikają aksony komórek węchowych nabłonka, który pokrywa tę część jamy (ok. 2×2,5 cm², ok. 2×50 mln komórek czuciowych {{r|Potargowicz}}).
 
W kłębuszkach BO znajdują się liczne synapsy, w których sygnał o pobudzeniu neuronów I rzędu (receptorów) jest przekazywany neuronom II rzędu (komórki mitralne). Aby zbadać szlak informacji przekazywanych z receptorów zawierających jeden rodzaj OR, wyhodowano mysz transgeniczną, w której komórkach następowała równoczesna ekspresja OR i lektyny jęczmienia. Obecność lektyny w komórkach badanych tkanek stwierdzano metodami [[w:immunohistochemia|immunohistochemicznymi]]. Uzyskano barwne obrazy mikroskopowe wskazujące, że w jednym kłębuszku opuszki myszy zbiega się kilka tysięcy aksonów komórek nabłonka. Powoduje to znaczne wzmocnienie sygnału o istnieniu zewnętrznego bodźca, który jest rejestrowany przez określony rodzaj OR. Rozmieszczenie kłębuszków odbierających sygnały z różnych OR jest charakterystyczne dla gatunku. Nie zmienia się w czasie, mimo że komórki nabłonka żyją zaledwie 2 miesiące (są zastępowane przez nieustannie powstające nowe komórki).
 
Informacja o pobudzeniu określonych stref opuszki jest przekazywana do neuronów rozsianych w korze węchowej. Z określonym zapachem wiąże się odpowiednia grupa pobudzonych neuronów kory, podobna u różnych osobników gatunku.
 
Informacja o pobudzeniu jednego typu OR byłaby równoznaczna z identyfikacją zapachu, gdyby te receptory były selektywnymi czujnikami, reagującymi na jeden związek lub na ściśle określoną grupę zanieczyszczeń powietrza, o takim samym lub podobnym zapachu. Ten warunek nie jest spełniony. Badania L.B. Buck i R. Axela wykazały, że jeden OR może reagować na działanie różnych związków chemicznych, a jeden związek wywołuje pobudzenie neuronów z różnymi OR. Dekodowanie niemal nieskończonej liczby zapachów polega więc na ich porównywaniu wzorcami, zachowanymi w pamięci w postaci informacji o reakcjach wszystkich receptorów (przetworzonych i wzmocnionych w opuszce){{r|L.Buck Nobel lecture}}{{r|Białaczewski}}{{r|Skangiel-Kramska}}.
Linia 125:
|-
| [[w:Oktanol|Oktanol]]||0||0||x||x||0||x||0||x||0||0||przyjemny
|}
[[Plik:Model smell recogn.svg|thumb|200px|Model przekazywania sygnałów o zapachu z nabłonka węchowego do ośrodka korowego<ref group="uwaga">Zobacz też: slajdy z wykładu Lindy B. Buck, wygłoszonego w czasie uroczystości nadania Nagrody Nobla, [http://nobelprize.org/nobel_prizes/medicine/laureates/2004/buck-slides.pdf (slajd 46 i 47)].</ref>]]
 
Badania systemu węchowego, zainicjowane odkryciem OR, są intensywnie kontynuowane w wielu laboratoriach świata. W laboratorium Richarda Axela{{r|Axel Lab 2011}} badano np. węch transgenicznej myszy, wyhodowanej z komórki jajowej której jądro zastąpiono jądrem komórki węchowej. Stwierdzono, że węch tej myszy nie odbiega od węchu myszy grupy porównawczej. W komórkach jej nabłonka węchowego powstały wszystkie rodzaje OR myszy i mapa pobudzeń tych receptorów jest poprawnie rozpoznawana w mózgu{{r|Białaczewski}}. W laboratorium Lindy B. Buck wyhodowano np. klon myszy ze znaczonymi białkami na całej długości drogi węchowej, co ułatwia badania organizacji systemu węchowego{{r|Białaczewski}}. Wykazano też, że niektóre bezwonne związki mogą wywoływać wrażenia węchowe, jeżeli występują w mieszaninach{{r|Linda Buck 2006}}. W innych laboratoriach prowadzone są np. badania systemów nerwowych innych organizmów, np. porównania systemów węchowych człowieka i [[w:szympans|szympansa]] i inne analizy zmian systemu węchowego w procesie ewolucji{{r|Stettler Axel 2009}}{{r|Evolution}}.
 
{{Uwagi}}
Linia 174:
* <ref name="Evolution">{{cytuj pismo|nazwisko=Eisthena|imię=H.L.|nazwisko2=Polesea|imię2=G.|tytuł=Evolution of Nervous Systems|czasopismo=Evolution of Nervous Systems|wydanie=2|strony=355–406|język=en|data=2007-02-02 (online)|url=http://www.sciencedirect.com/science/article/pii/B0123708788001427|doi=10.1016/B0-12-370878-8/00142-7}}</ref>
 
* <ref name="Ponikowska">{{cytuj pismo|nazwisko=Ponikowska|imię=Beata |czasopismo=Prace poglądowe w Adv. Clin. Ex. Med.|wydanie=4|wolumin=12|strony=525–528|issn= 1230-025X|język=pl|data=2003 |url= http://www.dbc.wroc.pl/Content/2382/r17_Pani.pdf|tytuł=Nowoczesne metody badania zmysłu węchu}}</ref>
 
* <ref name = "Białaczewski">{{cytuj pismo |nazwisko = Białaczewski |imię =Leszek |tytuł = Nagroda Nobla za rok 2004: odkrycie genów receptorów węchowych |url = http://www.mediton.eu/library/orl_volume-4_issue-4_article-500.pdf |czasopismo = Otorynolaryngologia |wolumin = 4|wydanie = 4|strony = 163–168 |rok = 2005|język=pl}}</ref>
Linia 186:
* <ref name="Obrębowski">{{cytuj pismo|nazwisko=Obrębowski|imię=Andrzej |tytuł=Nagroda Nobla w dziedzinie fizjologii i medycyny za rok 2004|czasopismo =Medycyna Praktyczna|rok = 2005 | wydanie=03|odpowiedzialność = Uniwersytet Adama Kopernika, Wydział Informatyki, Katedra i Klinika Foniatrii i Audiologii AM im. Karola Marcinkowskiego w Poznaniu|język=pl|data=2005-04-11|url=http://www.mp.pl/artykuly/index.php?aid=26055&_tc=126CC645AB454EB8B32F2AE28CDF673B}}</ref>
 
* <ref name="klasyfikacja OR">{{cytuj pismo | autor = G. Glusman, A. Bahar, D. Sharon, Y. Pilpel, J. White, D. Lancet | tytuł = The olfactory receptor gene superfamily: data mining, classification, and nomenclature | czasopisno = Mamm. Genome | wolumin = 11 | wydanie = 11 | strony = 1016–1023 | rok = 2000 | pmid = 11063259 | doi = 10.1007/s003350010196|język=en}}</ref>
 
* <ref name="OR10AG1">{{cytuj stronę|url=http://www.genenames.org/data/hgnc_data.php?hgnc_id=19607 OR10AG|tytuł=OR10AG1|autor=HGNC; HUGO Gene Nomenclature Committee|praca=Gene Symbol Report|opublikowany=www.genenames.org |język=en|data dostępu=2011-06-04}}</ref>