Metody matematyczne fizyki/Rachunek tensorowy: Różnice pomiędzy wersjami

Usunięta treść Dodana treść
Nie podano opisu zmian
Linia 195:
==Pochodna kowariantna wielkości o współrzędnych kowariantnych i kontrawariantnych==
Aby udowodnić wzór na pochodną tensorową na dowolną wielkość tensorową, należy skorzystać z definicji wielkości absolutnej z poprzedniego rozdziału, czyli ze wzoru z punktu {{linkWzór|2.61}}, dla której różniczka zupełna wielkości absolutnej wyraża się przez:
{{IndexWzór|<MATH>dA=d\left[\left(A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\right)\right]=d\left(A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}\right)\left(\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\right)+\;</MATH><BR><MATH>+\left(\sum^r_{q=1}A^{...,k_{q-1},k_q,k_{q+1},...}_{r_1,r_2,r_3,..,r_m}de_{k_q}\prod^r_{i=1,i\neq q}e_{k_i}\prod^m_{i=1}e^{r_i}\right)+\;</MATH><BR><MATH>+\left(\sum^m_{q=1}A^{k_1,k_2,k_3,...,k_r}_{...,r_{q-1},r_q,r_{q+1},...}de^{r_q}\prod^r_{i=1} e_{k_i}\prod^m_{i=1,i\neq q}e^{r^i}\right)\;</MATH>|2.62}}
Teraz skorzystajmy z definicji symboli Christofela, czyli ze wzorów {{LinkWzór|2.24}} i {{LinkWzór|2.25}}, aby dojść do wniosku, że różniczki zupełne wektorów kowariantnych i kowariantnych wyrażają się jak poniżej:
{|width=100%|-