Metody matematyczne fizyki/Rachunek tensorowy: Różnice pomiędzy wersjami

Usunięta treść Dodana treść
Nie podano opisu zmian
Linia 195:
==Pochodna kowariantna wielkości o współrzędnych kowariantnych i kontrawariantnych==
Aby udowodnić wzór na pochodną tensorową na dowolną wielkość tensorową, należy skorzystać z definicji wielkości absolutnej z poprzedniego rozdziału, czyli ze wzoru z punktu {{linkWzór|2.61}}, dla której różniczka zupełna wielkości absolutnej wyraża się przez:
{{IndexWzór|<MATH>dA=d\left[\left(A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\right)\right]=d\left(A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}\right)\left(\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\right)+\;</MATH><BR><MATH>+\left(\sum^r_{q=1}A^{...,k_{q-1},k_q,k_{q+1},...}_{r_1,r_2,r_3,..,r_m}de_{k_q}\prod^r_{i=1,i\neq q}e_{k_i}\prod^m_{i=1}e^{r_i}\right)+\;</MATH><BR><MATH>+\left(\sum^m_{q=1}A^{k_1,k_2,k_3,...,k_r}_{...,r_{q-1},r_q,r_{q+1},...}de^{r_q}\prod^r_{i=1} e_{k_i}\prod^m_{i=1,i\neq q}e^{r^i}\right)\;</MATH>|2.62}}
Teraz skorzystajmy z definicji symboli Christofela, czyli ze wzorów {{LinkWzór|2.24}} i {{LinkWzór|2.25}}, aby dojść do wniosku, że różniczki zupełne wektorów kowariantnych i kowariantnych wyrażają się jak poniżej:
{|width=100%|-
Linia 202:
|}
A zatem wzór na różniczką wielkości A przedstawia się na podstawie wzoru {{linkWzór|2.62}} do którego podstawiamy dwie tożsamości {{LinkWzór|2.63}} i {{LinkWzór|2.64}}, wtedy dostajemy:
{{IndexWzór|<MATH>dA={{\partial A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}}\over{\partial x^l}}dx^l\left(\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\right)+\sum^r_{i=1} A^{...,k_{i-1},q,k_{i+1},...}_{r_1,r_2,r_3,..,r_m}{\Gamma^{k_i}}_{lq}dx^l\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}+\;</MATH><BR><MATH>-\sum^m_{i=1}A^{k_1,k_2,k_3,...,k_r}_{...,r_{i-1},q,r_{i+1},...}{\Gamma^{q}}_{lr_i}\left(\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}dx^l\right)\;</MATH>|2.65}}
Jeśli wzór {{LinkWzór|2.65}} podzielimy przez wielkość ''du'', dalej grupując wyrazy w nawiasie, a poza nawiasem umieścimy pochodne wielkości x<sup>l</sup> względem wielkości ''u'' i iloczyn wszystkich wektorów kowariantnych i kontrawariantnych, otrzymamy:
{{IndexWzór|<MATH>{{dA}\over{du}}=\left({{\partial A^{k_1,k_2,k_3,...,k_r}_{r_1,r_2,r_3,..,r_m}}\over{\partial x^l}}+\sum^r_{i=1}A^{...,k_{i-1},q,k_{i+1},...}_{r_1,r_2,r_3,..,r_m}{\Gamma^{k_i}}_{lq}-\sum^m_{i=1}A^{k_1,k_2,k_3,...,k_r}_{...,r_{i-1},q,r_{i+1},...}{\Gamma^q}_{lr_i}\right){{dx^l}\over{du}}\prod^r_{i=1} e_{k_i}\prod^m_{i=1}e^{r_i}\;</MATH>|2.66}}