Wstęp do fizyki jądra atomowego/Rozpady (przejścia, przemiany) jądrowe: Różnice pomiędzy wersjami

{{IndexGrafika|Energia jądra bez bariery energetycznej.png|3.19|Energia jądra bez bariery energetycznej}}
{{IndexGrafika|Przejście_tunelowe_z_barierą_energetyczną_zależnej_od_deformacji.png|3.20|Przejście tunelowe z barierą energetyczną}}
{{IndexGrafika|Radioactive decay by fission.png|3.21|Dwa maksima a roszczepienierozczepienie jądra}}
Rozpatrzmy mechanizm rzoszczepienie sf bez emisji neutronów na dwa fragmenty, dla którego zachodzą warunki {{LinkWzór|3.120}} i {{LinkWzór|3.121}}, wtedy rozszczepienie wygląda:
{{IndexWzór|<MATH>{}^A_ZX\rightarrow{}^{A_1}_{Z_1}F_1+{}^{A_2}_{Z_2}F_2\;</MATH>{{Tekst|&nbsp;gdzie:&nbsp;}}<MATH>A_1={{2}\over{5}}A\;</MATH>{{Tekst|&nbsp;i&nbsp;}}<MATH>A_2={{3}\over{5}}A\;</MATH>{{Tekst|&nbsp;oraz&nbsp;}}<MATH>Z_1={{3}\over{5}}Z\;</MATH>{{Tekst|&nbsp;i&nbsp;}}<MATH>Z_2={{2}\over{5}}Z\;</MATH>|3.122}}
Energię jądra będziemy określać według modelu kroplowego {{linkWzór|1.28|Wstęp_do_fizyki_jądra_atomowego/Nukleony_a_budowa_jądra_atomowego}}. Załóżmy, że podział jądra zachodzi przez podział jądra na dwa sferyczne fragmenty, wtedy energia wydzielająca się w wyniku roszczepieniarozczepienia jest:
{{IndexWzór|<MATH>Q_{sf}(X)=[E_s(X)+E_C(x)]-[\underbrace{E_s(F_1)+E_s(F_2)}_{1,25E_S(X)}+\underbrace{E_C(F_1(F_1)+F_C(F_2)}_{0,64E_C(X)}]\;</MATH>|3.123}}
We wzorze {{LinkWzór|3.112}} energię oznaczoną przez wskaźnik S oznacza efekty powierzchniowe, które pozwalają utrzymać kształt sferyczny jądra, a przez wskaźnik C będziemy oznaczać jako oddziaływanie kulombowskie, które starają się rozerwać jądro. W mechanizmie sf istotną rolę odgrywają energie E<sub>C</sub> i E<sub>S</sub>. stąd energię jądra {{linkWzór|3.112}} możemy przepisać:
Funkcja {{linkWzór|3.118}} rośnie przy wzroście &beta;<sub>2</sub>, więc to pełni rolę bariery energetycznej &Delta;E<sub>sf</sub> przy podziale jądra. Dla małych &beta;<sub>2</sub> przy energii jądra niezdeformowanego E<sub>LD</sub>(Z,A,0) energię jądra zdeformowanego piszemy poprzez:
{{IndexWzór|<MATH>E_{LD}(Z,A,\beta_2)\simeq E_{LD}(Z,A,0)+{{\beta_2^2}\over{5}}\left(2E_S(A,Z,0)-E_C(Z,A,0)\right)\;</MATH>|3.126}}
Jeśli (2E<sub>s</sub>-E<sub>C</sub><0, to E<sub>LD</sub>(&beta;<sub>2</sub>) jest funkcją malejącą, wtedy nie ma bariery na rozczepienie. Warunek ten jest spełniony dla Z<sup>2</sup>/A&ge;49, gdy Z&ge;120, wtedy rozpad sf jądra jest natychmiastowy, wtedy czas połowicznego zaniku jest rzędu 10<sup>-22</sup>s. Jeżeli (2E<Sub>s</sub>-E<sub>C</sub>)>0 bariera występuje, a jej wysokość maleje w miarę zmniejszania się parametru Z<sup>2</sup>/A&le;49, wtedy sf zachodzi tylko w wyniku przejść tunelowych, i czas połowicznego zaniku silnie zależy od Z<sup>2</sup>/A. Przy większej deformacji prowadzącej do rozszczepienia jądra atomowego poprawki powłokowe zakładające gładką zależność bariery na rozczepienie mogą prowadzić do pojawienia się drugiego minimum. Tłumaczy to zjawisko izometrii rozszczepieniowej. Ze względu na rozczepienie bariery połowiczny czas życia stanu podstawowego jest większy lub równy czasowi stanu izomerycznego, tzn.T<sub>1/2</sub>(sf)<sub>st. podst.</sub>&ge;T<sub>1/2</sub>(sf)<sub>st. izomer.</sub>, dla jądra <sup>238</sup>U mamy czas zycia poziomu podstawowego T<sub>1/2</sub>&asymp;6&sdot;10<sup>15</sup>lat, a czas życia poziomu izomerycznego jest T<sub>1/2</sub>&asymp;195&sdot;10<sup>-2</SUP>s. Uwzględnienie &delta;E<sub>shell</sub>+&delta;E<sub>paring</sub>, czyli energię uwzględniające strukturę powłokową jądra i energię parowania, pozwalają dokładnie opisać wysokość bariery na rozszczepienie w poszczególnych jądrach oraz obserwowaną doświadczalnie silną zależność sf od struktury jądra atomowego, i pozwalają zrozumieć dwugarbny charakterystyczny rozkład mas w wyniku roszczepieniarozczepienia jądra atomowego w roszczepieniurozczepieniu asymetrycznym.
<noinclude>{{kreska nawigacja|Wstęp do fizyki jądra atomowego|Promieniowanie i szeregi promieniotwórcze|Najważniejsze parametry jądra atomowego}}</noinclude><noinclude>{{BottomColumnPage}}</noinclude>