Wstęp do fizyki jądra atomowego/Oddziaływanie promieniowania z materią: Różnice pomiędzy wersjami

brak opisu edycji
Nie podano opisu zmian
Nie podano opisu zmian
To zjawisko następuje, gdy energia fotonu jest większa niż energia wiązania elektronu na danej powłoce elektronowej, czyli zachodzi {{Formuła|<MATH>h\nu\geq B_e(n)\;</MATH>}}. Energia wybitego elektronu jest równa: {{Formuła|<MATH>E_{fe}=h\nu-B_e(n)\;</MATH>}}. Jeśli energia fotonu spełnia warunek h&nu;<big>&#187;</big>B<sub>e</SUB>(k), wtedy atom może być obdarty z elektronu, który znajduje się na n-tej powłoce elektronowej, który zostaje wydarty, jeśli energia fotonu jest odpowiednia.
Przekrój czynny na zajście tego zdarzenia dla małych energii fotonu dla obu tych przypadków piszemy:
{{FlexRopwFlexRow|1={{indexWzór|<MATH>\sigma_f\sim{{Z^5}\over{h\nu}}\mbox{ dla }h\nu\ll B_e(K)\;</MATH>|8.20}}|2={{IndexWzór|<MATH>{\sigma\sim{{Z^5}\over{(h\nu)^{7/2}}}}\mbox{ dla }h\nu\geq B_e(K)\;</MATH>|8.21}}}}
Zjawisko '''zderzenia koherentnego''' w rozpraszanie Rayleigh'a, zachodzi gdy kąt między rozproszeniem kwantu &gamma; przed i po zderzeniu jest mniejsze niż 20<sup>o</sup> dla glinu (Al) i 4<sup>o</sup> dla ołowiu (Pb). Przekrój czynny na to rozpraszanie rośnie wraz z liczbą atomową jądra Z i maleje wraz z energią kwantu &gamma; h&nu;. Jego przekrój jest bardzo mały, obserwuje się to dla przypadku energii kwantu h&nu;&le;1MeV.