Szczególna teoria względności/Tensory w czasoprzestrzeni: Różnice pomiędzy wersjami

Usunięta treść Dodana treść
Linia 159:
{{IndexWzór|<MATH>u^i{{\partial u^{\mu}}\over{\partial x^{i}}}=0\Rightarrow\lim_{V\rightarrow 0}\int u^i{{\partial u^{\mu}}\over{\partial x^{i}}}dV=\lim_{V\rightarrow 0}\int\left((u^iu^{\mu})_{,i}-u^{\mu}{u^{i}}_{,i}\right)dV=\lim_{S\rightarrow 0}\int u^iu^{\mu}dS_i-\lim_{V\rightarrow 0}\int u^{\mu}{u^i}_{,i}dV=\;</MATH><BR><MATH>=u^{\mu}\lim_{S\rightarrow 0}\oint_S u^idS_i-u^{\mu}\lim_{V\rightarrow 0}\int_V {u^i}_{,i}dV=u^{\mu}\lim_{S\rightarrow 0}\oint_S u^idS_i-u^{\mu}\lim_{S\rightarrow 0}\oint_S u^idS_i=0\;</MATH>|Ld2}}
A więc od układów globalnie (lokalnie) płaskich o globalnie (lokalnie) stałym tensorze prędkości na podstawie {{LinkWzór|W.9da|Szczególna teoria względności/Wstęp do szczególnej teorii względności}} przejście do układów co najwyżej zakrzywionych daje nam zero.
*3. A oto przykład całki słuszne dla układów co najwyżej słabozakrzywionych, ale najpierw udowodnijmy jego wartość w układzieukładach globalnie (lokalnie) płaskich o globalnie (lokalnie) stałym tensorze prędkości:
{{IndexWzór|<MATH>\lim_{S\rightarrow 0}\oint_S(\rho_0 c^2+p)u^{\mu}u^jdS_j=0\Rightarrow \lim_{V\rightarrow}\int_V\left((\rho_0 c^2+p)u^{\mu}u_j\right)_{,j}dV=
\lim_{V\rightarrow 0}\int_V\Big((\rho_0c^2+p)_{,j}u^{\mu}u^j+(\rho_0c^2+p){u^{\mu}}_{,j}u^j+\;</MATH><BR><MATH>+(\rho_0 c^2+p)u^{\mu}{u^j}_{,j}\Big)dV=