Szczególna teoria względności/Anormalne układy, tylko matematyczne, a nie fizyczne
Podręcznik: Szczególna teoria względności.
Paradoks niespełnienia mechaniki Newtona oraz szczególnej teorii względności, a istnienie układów słabozakrzywionych (zakrzywionych), fizyka jako teoria informacji, a paradoks niespełnienia zasady najmniejszego działania
edytujPisząc różniczkę wyznacznika tensora metrycznego podwójnie kowariantnego Upłynął czas przewidziany do wykonywania skryptów., zdefiniowanego w dowolnym układzie ogólnie krzywoliniowym, o wartości niezależnym od czasu, w układzie globalnie (lokalnie) płaskim o globalnie (lokalnie) zerowej prędkości względem współrzędnych w tym samym układzie, to wtedy dojdziemy dla cząstki do: Upłynął czas przewidziany do wykonywania skryptów. Wniosek Upłynął czas przewidziany do wykonywania skryptów. zachodzi dla nieskończenie małych przedziałów. Ale Upłynął czas przewidziany do wykonywania skryptów. jest inną stałą w dowolnych różnych przedziałach w czasoprzestrzeni, a w tym samym przedziale jest ono takie same. Co Upłynął czas przewidziany do wykonywania skryptów. zachodzi też dla układów ogólnie nieprostokątnych nie tylko dla układów globalnie (lokalnie) o zerowej prędkości. Ale transformacja macierzy tensora metrycznego z układu jednego do innego jest: Upłynął czas przewidziany do wykonywania skryptów. Weźmy Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów. oraz Upłynął czas przewidziany do wykonywania skryptów. niech będzie tożsame z Upłynął czas przewidziany do wykonywania skryptów., wtedy mamy Upłynął czas przewidziany do wykonywania skryptów. zmiennych w Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów. zmiennych w Upłynął czas przewidziany do wykonywania skryptów. (gdzie Upłynął czas przewidziany do wykonywania skryptów. to wymiar czasoprzestrzeni lub wymiar przestrzeni w teorii Galileusza), a również jest: Upłynął czas przewidziany do wykonywania skryptów. niezależnych równań, zatem stopni swobody jest Upłynął czas przewidziany do wykonywania skryptów., czyli da się znaleźć takie Upłynął czas przewidziany do wykonywania skryptów.. Jeszcze niech układ, w którym panuje Upłynął czas przewidziany do wykonywania skryptów. będzie globalnie (lokalnie) o zerowej prędkości, wtedy mamy Upłynął czas przewidziany do wykonywania skryptów. mniej stopni swobody, bo Upłynął czas przewidziany do wykonywania skryptów., stąd całkowita liczba stopni swobody jest Upłynął czas przewidziany do wykonywania skryptów., czyli nadal da się znaleźć taki układ z tensorem metrycznym Upłynął czas przewidziany do wykonywania skryptów., a jeżeli przyjmiemy lokalnie Upłynął czas przewidziany do wykonywania skryptów., co wtedy nasz układ równań ma Upłynął czas przewidziany do wykonywania skryptów. stopni swobody, czyli również da się znaleźć takie Upłynął czas przewidziany do wykonywania skryptów.. Stąd Upłynął czas przewidziany do wykonywania skryptów. Wniosek Upłynął czas przewidziany do wykonywania skryptów. zachodzi dla nieskończenie małych przedziałów. Ale Upłynął czas przewidziany do wykonywania skryptów., a więc też Upłynął czas przewidziany do wykonywania skryptów., są innymi stałymi w dowolnych różnych tych przedziałach w czasoprzestrzeni, a w tym samym przedziale są one takie same. W układach ogólnie krzywoliniowych (we współrzędnych uogólnionych) możemy napisać wyznacznik tensora metrycznego podwójnie kowariantnego Upłynął czas przewidziany do wykonywania skryptów. (na podstawie Upłynął czas przewidziany do wykonywania skryptów.) pisząc względem współrzędnych Upłynął czas przewidziany do wykonywania skryptów. w dowolnym układzie niezależnie jakim, mamy dla cząstki w ruchu: Upłynął czas przewidziany do wykonywania skryptów. W danym punkcie może być ciało o dowolnej prędkości, ale równość Upłynął czas przewidziany do wykonywania skryptów. jest spełniona dla wyznacznika tensora metrycznego podwójnie kowariantnego Upłynął czas przewidziany do wykonywania skryptów. dowolnego układu ogólnie krzywoliniowego (we współrzędnych uogólnionych) zależnego od czasu, stąd jedynym możliwym układem jest układ globalnie (lokalnie) płaski ogólnie nieprostokątny, a przecież to nie prawda, zatem dla cząstki w ruchu: Upłynął czas przewidziany do wykonywania skryptów. W naszych obliczeniach jeszcze mamy Upłynął czas przewidziany do wykonywania skryptów. równań, ale ta transformacja jest tożsamościowa, i dlatego jej nie uwzlędnialiśmy, bo tam macierz transformacji jest opisana dla tych układów liczbami nieuogólnionymi, a tam tensory prędkości są zerowe, bo Upłynął czas przewidziany do wykonywania skryptów., tzn. według Upłynął czas przewidziany do wykonywania skryptów. (szczególna teoria względności) oraz Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów. (mechanika Newtona), a to równanie: Upłynął czas przewidziany do wykonywania skryptów. Stąd cząstki nie zmieniają położenia w czasie i przestrzeni, czyli również czas w tym przypadku nie płynie, stąd układ współrzędnych może być też globalnie (lokalnie) płaski, wychodząc od zanurzunego w nim układu we współrzędnych krzywoliniowych (uogólnionych), dla tego przypadku. W dowolnym innym układzie współrzędnym globalnie (lokalnie) płaskim mając Upłynął czas przewidziany do wykonywania skryptów. też to samo zachodzi z definicji transformacji tensora z jednego układu na drugi. Ale może być tak, że nie da się znaleźć takiego Upłynął czas przewidziany do wykonywania skryptów., bo układ równań może być sprzeczny mimo istnienia stopni swobody do jego liczenia. Co dowodzi jako pierwszy argument prawdziwość szczególnej teorii względności dla układów globalnie (lokalnie) płaskich, ale też mechaniki Newtona, ale gdyby naprawdę czas nie płynął i wszystkie zmiany ruchu czasoprzestrzeni były zerowe według Upłynął czas przewidziany do wykonywania skryptów. (bo w tych układach funkcje transformacji nie są funkcjami uogólnionymi dla układów globalnie (lokalnie) płaskich), ale w nich tensory prędkości są zerowe z definicji nieoznaczoności w matematyce (bo Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., ale również z rachunku lagrangianowego Upłynął czas przewidziany do wykonywania skryptów. mamy Upłynął czas przewidziany do wykonywania skryptów.), a dla układów słabozakrzywionych opisywanych jako przejście z układów globalnie (lokalnie) płaskich do słabozakrzywionych przez macierz transformacji Upłynął czas przewidziany do wykonywania skryptów. będącą liczbami nieugolnionymi, też to zachodzi, stąd dochodzimy do wniosku, że tam w tym przejściu, to nadal po transformacji Upłynął czas przewidziany do wykonywania skryptów., ale też nadal zachodzi z rachunku lagrangianowego Upłynął czas przewidziany do wykonywania skryptów. Upłynął czas przewidziany do wykonywania skryptów., czyli żyjemy w nieruchomej czasoprzestrzeni, stąd wynika, że układy globalnie (lokalnie) płaskie są tylko matematycznymi (niefizycznymi) układami, a układy słabozakrzywione (zakrzywione), transformacje od tych pierwszych układów są liczbami uogólnionymi, a nie nieuogólnionymi, są fizyczne (bo wtedy Upłynął czas przewidziany do wykonywania skryptów.), a zasada wariacyjna na podstawie tego modułu jest niespełniona ze względu, że można dodać do całki działania jedynki lub zera, ale z oczywistych powodów zasada najmniejszego działania opisuje tylko układy globalnie (lokalnie) płaskie, tzn. nie da się przejść do układów globalnie (lokalnie) płaskich z układów słabozakrzywionych (zakrzywionych) przy transformacjach będących nie liczbami uogólnionymi (wtedy transformacje muszą być liczbami uogólnionymi, by się dało to zrobić), czyli ciała odniesienia w układach globalnie (lokalnie) płaskich zawsze spoczywają, a w układach słabozakrzwionych mogą spoczywać, a podczas transformacji z układu globalnie (lokalnie) płaskiego do słabozakrzywionego dochodzi jeszcze jedna transformacja, tym razem nietożsamościowa, tensora prędkości Upłynął czas przewidziany do wykonywania skryptów.. Aby zasada najmniejszego działania, by była spełniona również w układach słabozakrzywionych, to tam nie należy dodawać jedynek i zer do całki działania, bo tam są one niespełnione według twierdzenia matematyki sprzecznej Upłynął czas przewidziany do wykonywania skryptów., by do tak skonstrułowanej całki działania wykorzystywać równanie Eulera-Lagrange'a, by otrzymać drugą zasadę Lagrange'a. Zatem ciała to są informacje rozprzestrzeniające się w czasoprzestrzeni (a ciała jako nieinformacje są nieruchome) opisane względem współrzędnych układu płaskiego, które opisują ruch informacji, w czasoprzestrzeni słabozakrzywionej (zakrzywionej), w których tensory prędkości ruchu informacji, jako nowe ciała, zmieniają ogólnie w czasie, która według procedury Upłynął czas przewidziany do wykonywania skryptów. spełnia mechanika Newtona dla małych prędkości i mechanika Einsteina dla dowolnych prędkości Upłynął czas przewidziany do wykonywania skryptów., podobnie też zachodzi dla czasoprzestrzeni zakrzywionej opisywanej przez ogólną teorię względności, a więc stąd dla ruchu informacji, jako nowe ciała, dochodzimy do prawdziwości ogólnej teorii względności i innych teorii dla układów zakrzywionych, a także mechaniki Newtona i szczególnej teorii względności dla układów słabozakrzywionych uważanych za płaskie ogólnie nieprostokątne albo krzywoliniowe lub we współrzędnych uogólnionych zanurzonych w układach słabozakrzywionych uważanych za płaskie ogólnie nieprostokątne.
Układy globalnie (lokalnie) płaskie oraz zerowanie się pewnych różniczek i wielkości fizycznych ich charakteryzujących, w szczególnej teorii względności i mechanice Newtona, a układy słabozakrzywione
edytujNapiszmy odległość pomiędzy dwoma punktami w układzie globalnie (lokalnie) płaskim nieskończenie bliskie względem siebie i wyciągnijmy przed nim wyraz Upłynął czas przewidziany do wykonywania skryptów. z Upłynął czas przewidziany do wykonywania skryptów., wtedy: Upłynął czas przewidziany do wykonywania skryptów. Ale ponieważ w układzie globalnie (lokalnie) płaskim zachodzi Upłynął czas przewidziany do wykonywania skryptów., czyli wszystkie ciała poruszają się ze zerową prędkością z symetrii w tym układzie globalnie (lokalnie) (bo istnienie tylko jeden globalnie (lokalnie) układ odniesienia), a także z Upłynął czas przewidziany do wykonywania skryptów. w szczególnej teorii względności oraz Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., w mechanice Newtona, nawet fotony, wtedy Upłynął czas przewidziany do wykonywania skryptów., ale z transformacji Upłynął czas przewidziany do wykonywania skryptów. prędkości zerowej światła z układu globalnie (lokalnie) płaskiego do słabozakrzywionego (tam Upłynął czas przewidziany do wykonywania skryptów. jest liczbą uogólnioną) wychodzi, że prędkość światła jest taka sama jaką znamy z doświadczenia fizycznego, zatem w układach globalnie (lokalnie) płaskich z Upłynął czas przewidziany do wykonywania skryptów. wynika, że odległość w tych układach pomiędzy dwoma różnymi punktami jest zerowa, ale już tak nie zachodzi w układach słabozakrzywionych, tam prędkość światła jest niezerowa skończona, a odległości pomiędzy dwoma różnymi punktami nie są zerowe.
- Według poprzednich rozdziałów jest kilka rozwiązań na Upłynął czas przewidziany do wykonywania skryptów. w układzie globalnie (lokalnie) płaskim, czyli: Upłynął czas przewidziany do wykonywania skryptów., gdzie stąd pierwsze rozwiązanie wynika z Upłynął czas przewidziany do wykonywania skryptów., drugie z Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., (układy dyskretne), lub Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., (układy rozciągłe), a trzecie rozwiążanie wynika, z tego, że Upłynął czas przewidziany do wykonywania skryptów. z Upłynął czas przewidziany do wykonywania skryptów. (transformacja czasu) oraz z Upłynął czas przewidziany do wykonywania skryptów. (transformacja prędkości światła), i Upłynął czas przewidziany do wykonywania skryptów. (transformowalność długości wektora w przestrzeni zwykłej), a także czwarte rozwiązanie wynika z Upłynął czas przewidziany do wykonywania skryptów. (bezwzględnie w nim w liczniku jest zero) z Upłynął czas przewidziany do wykonywania skryptów., bo wtedy w układach globalnie (lokalnie) płaskich mamy jeden globalnie (lokalnie) układ odniesienia tam i tam wszystkie ciała globalnie (lokalnie) spoczywają.
Jeżeli Upłynął czas przewidziany do wykonywania skryptów. w Upłynął czas przewidziany do wykonywania skryptów. z teorii odległości pomiędzy punktami, bo Upłynął czas przewidziany do wykonywania skryptów., w układach globalnie (lokalnie) płaskich, na podstawie Upłynął czas przewidziany do wykonywania skryptów., ale z transformacji czasu, czyli Upłynął czas przewidziany do wykonywania skryptów., mamy Upłynął czas przewidziany do wykonywania skryptów., bo Upłynął czas przewidziany do wykonywania skryptów. (tutaj wybieramy jego pierwsze rozwiązanie na Upłynął czas przewidziany do wykonywania skryptów. jako matematyczne do dowodu szczególne teorii względności) z Upłynął czas przewidziany do wykonywania skryptów., czyli odległości pomiędzy punktami czasowe są zerowe, a jeżeli wybierzemy inne rozwiązania Upłynął czas przewidziany do wykonywania skryptów., ale ponieważ zachodzi Upłynął czas przewidziany do wykonywania skryptów. według pierwszego rozwiązania na Upłynął czas przewidziany do wykonywania skryptów., aby wszystkie te rozwiązania opisywały tą różniczkę czasu, to ta transformacja różniczki czasu, która jest zerem, jest spełniona, a więc z Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów. (bo Upłynął czas przewidziany do wykonywania skryptów.), mamy Upłynął czas przewidziany do wykonywania skryptów. na podstawie odległości pomiędzy punktami nieskończenie małych Upłynął czas przewidziany do wykonywania skryptów., a ponieważ według Upłynął czas przewidziany do wykonywania skryptów. czas i ruch nie płyną, i istnieje tylko jeden układ odniesienia w układach globalnie płaskich, to wtedy zachodzi w nim: Upłynął czas przewidziany do wykonywania skryptów., a również ze stałości gęstości masy spoczynkowej Upłynął czas przewidziany do wykonywania skryptów. (bo tam Upłynął czas przewidziany do wykonywania skryptów.) i Upłynął czas przewidziany do wykonywania skryptów. mamy Upłynął czas przewidziany do wykonywania skryptów., a także na podstawie, że Upłynął czas przewidziany do wykonywania skryptów. mamy Upłynął czas przewidziany do wykonywania skryptów. (czwarte rozwiązanie na Upłynął czas przewidziany do wykonywania skryptów.), a także z lokalnej zasady zachowania ładunku elektrycznego też wynika, że jego gęstość jest stała, a ładunek jest zerowy (bo Upłynął czas przewidziany do wykonywania skryptów., a także gęstość prądu elektrycznego ma stały kierunek, zwrot i wartość. Ale z równości Upłynął czas przewidziany do wykonywania skryptów. ze wzoru zerowania się tensora prędkości dla tych układów, czyli Upłynął czas przewidziany do wykonywania skryptów. (pierwsze rozwiązanie na Upłynął czas przewidziany do wykonywania skryptów.), mamy, że tensor gęstości prądu jest zerowy, stąd gęstość ładunku elektrycznego i natężenie prądu na podstawie Upłynął czas przewidziany do wykonywania skryptów. są zerowe, bo Upłynął czas przewidziany do wykonywania skryptów. (wybieramy tu kolejno pierwsze i czarte rozwiązanie na Upłynął czas przewidziany do wykonywania skryptów., a jeżeli zastosujemy te wyniki do pozostałych rozwiązań Upłynął czas przewidziany do wykonywania skryptów., też to samo zachodzi), aby wzory nie były sprzeczne, też przy Upłynął czas przewidziany do wykonywania skryptów. na podstawie Upłynął czas przewidziany do wykonywania skryptów. (bo w układach globalnie płaskich nie ma tam zderzeń globalnie i rozmiary wszechświata są zerowe) dla układów globalnie płaskich, wtedy tam gęstości tensora siły się zerują według zasady niezalezności działania tensorów sił, ale też na podstawie Upłynął czas przewidziany do wykonywania skryptów. z warunku, że Upłynął czas przewidziany do wykonywania skryptów. (wykorzystujemu tu zerowe i czwarte rozwiązanie na Upłynął czas przewidziany do wykonywania skryptów., te wyniki według pozostałych rozwiązań Upłynął czas przewidziany do wykonywania skryptów. też zachodzą) gęstość masy, nawet spoczynkowa, się zeruje, też aby wzory nie były sprzeczne.
A ponieważ rozmiary wszechświataUpłynął czas przewidziany do wykonywania skryptów. są zerowe w układach globalnie płaskich, na podstawie tego rozdziału, to wszystkie pochodne, nawet cząstkowe, rozważane tutaj są równe zero, bo wtedy następuje dzielenie zera przez zero, czyli w takiej postaci: Upłynął czas przewidziany do wykonywania skryptów., co stąd dla tego punktu są zerem, tak też jest w układach lokalnie płaskich, nie tylko globalnie, co stąd wynika licznik jest zerem bezwzględnym tam, (takie są własności tej nieoznaczności matematycznej tutaj w szczególnej teorii względności), stąd wynika, że poszczególne części tego punktu mają niezerowe nietransformowalne wielkości skalarne, które są takie same w układach globalnie płaskich, co w słabozakrzywionych, nawet masa spoczynkowa jest ogólnie niezerowa i nietransformowalna, a suma wszystkich ładunków, nawet masowych, są zerem na podstawie tego, że wszechświat w układzie globalnie płaskim jest punktem, zatem zachodzi dyskretnie i w sposób rozciągły kolejno dla układów słabozakrzywionych, w którym rozmiary wszechświata są niezerowe, a w układzie globalnie płaskim są zerowe, czyli:
- Czyli ładunek masowy zwany po prostu masą może być ujemny, jak i dodatni, czyli istnieje przyciąganie i odpychanie grawitacyjne.
- A transformacje wielkości nietransformowalnych według szczególnej teorii względności i ogólnej teorii względności są takie dla wielkości w tych teoriach:
A takie zachodzą własności na podstawie Upłynął czas przewidziany do wykonywania skryptów. (transformacja czasu) i Upłynął czas przewidziany do wykonywania skryptów. (transformacja prędkości światła), czyli: Upłynął czas przewidziany do wykonywania skryptów. Też zachodzi rozważanie w szczególnej teorii względności, wiedząc, że zachodzi Upłynął czas przewidziany do wykonywania skryptów., zatem w układach globalnie płaskich: Upłynął czas przewidziany do wykonywania skryptów.
- Własności jakie zachodzą w układach globalnie płaskich, to też zachodzą w układach lokalnie, nie tylko globalnie, płaskich o globalnie (lokalnie) stałym tensorze prędkości, na podstawie teorii transformacji.
Co stąd prawa szczególnej teorii względności, która jest zgodna z mechaniką Newtona dla prędkości nieskończenie małych i ogólną teorii względności dla przestrzeni zakrzywionych, i ogólnej teorii względności są ogólnie spełnione.
Dlaczego prędkość światła jest niezmiennicza względem transformacji pomiędzy układami słabozakrzywionymi (dowód), a układy globalnie (lokalnie) płaskie
edytujWeźmy tensory prędkości wynikające z teorii lagrangianowej z równania Eulera-Lagrange'a Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., wtedy dowiadujemy się, że wielkość wskaźnikowa prędkości Upłynął czas przewidziany do wykonywania skryptów. z Upłynął czas przewidziany do wykonywania skryptów., a zarazem tensor prędkości Upłynął czas przewidziany do wykonywania skryptów. przy definicji interwału czasoprzestrzennego Upłynął czas przewidziany do wykonywania skryptów. są równe zero, w układach globalnie (lokalnie) płaskich, stąd po transformacji dowolnymi transformacjami w układach globalnie (lokalnie) płaskich nadal są równe zero, więc prędkość światła w tych układach jest równa zero, bo Upłynął czas przewidziany do wykonywania skryptów. (gdyby było Upłynął czas przewidziany do wykonywania skryptów., to musiałoby wychodzić Upłynął czas przewidziany do wykonywania skryptów., a jest równe zero, co świadczy, że Upłynął czas przewidziany do wykonywania skryptów. z definicji nieoznaczności Upłynął czas przewidziany do wykonywania skryptów.) w układach globalnie (lokalnie) płaskich, stąd możemy wyprowadzić transformacje Lorentza Upłynął czas przewidziany do wykonywania skryptów. dla tych układów (dla tych układów mechanika Newtona i Einsteina są spełnione równocześnie, i zachodzi dla nich Upłynął czas przewidziany do wykonywania skryptów. z definicji nieoznaczności z lekcji matematyki), stąd po transformacji do układów słabozakrzywionych otrzymujemy transformacje pomiędzy układami słabozakrzywionymi Upłynął czas przewidziany do wykonywania skryptów., transformując prędkość światła do układów słabozakrzywionych od globalnie (lokalnie) płaskich według Upłynął czas przewidziany do wykonywania skryptów., mamy transformację Upłynął czas przewidziany do wykonywania skryptów., w którym przyjmujemy, że Upłynął czas przewidziany do wykonywania skryptów. Upłynął czas przewidziany do wykonywania skryptów., stąd mamy, że prędkość światła jest niezmiennicza przy transformacji, przechodząc z jednego układu słabozakrzywionego do drugiego, i wynosi Upłynął czas przewidziany do wykonywania skryptów. o wartości znaną z lekcji fizyki.
Stała prędkość światła w układach globalnie (lokalnie) płaskich i słabozakrzywionych, we całym wszechświecie
edytujWeźmy transformację prędkości światła z układu globalnie (lokalnie) płaskiego do słabozakrzywionego Upłynął czas przewidziany do wykonywania skryptów., ale zachodzi Upłynął czas przewidziany do wykonywania skryptów. w układach globalnie (lokalnie) płaskich na podstawie Upłynął czas przewidziany do wykonywania skryptów., wtedy możemy napisać: Upłynął czas przewidziany do wykonywania skryptów. Ale zachodzi warunek Upłynął czas przewidziany do wykonywania skryptów., stąd: Upłynął czas przewidziany do wykonywania skryptów. A więc na podstawie Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów. możemy powiedzieć wniosek przy stałej prędkości światła Upłynął czas przewidziany do wykonywania skryptów. w układach globalnie (lokalnie) płaskich: Upłynął czas przewidziany do wykonywania skryptów. Na podstawie wniosku Upłynął czas przewidziany do wykonywania skryptów. prędkość światła jest w przybliżeniu stała w układach słabozakrzywionych we całym wszechświecie, nie tylko w układach globalnie (lokalnie) płaskich, ale tylko w ramach szczególnej teorii względności, w których przyjęto warunek Upłynął czas przewidziany do wykonywania skryptów..
Jak rozwiązywać równania szczególnej teorii względności i mechaniki Newtona, a układy równań sprzecznych fizyki, zastosowanie matematyki sprzecznej
edytujWiemy, że układ równań sprzecznych fizyki nie ma rozwiązań matematycznych, a powiemy tutaj o sposobie rozwiązywania tychże właśnie równań, które są rozwiązaniami tylko matematycznymi, które zastosujemy do fizyki, i nazwiemy je też fizycznymi. Równania szczególnej teorii względności są dla układów rozciągłych kolejno dla szczególnej teorii względności i mechaniki Newtona dla lokalnej zachowawczości tensora gęstości energii(masy)-pędu: Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., równanie ciągłe ruchu: Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., lokalna zasada zachowania tensora gęstości pędu: Upłynął czas przewidziany do wykonywania skryptów., lokalna zasada zachowania energii(masy)-pędu: Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., z definicji jedynki różniczki interwału czasowego: Upłynął czas przewidziany do wykonywania skryptów., równania cechowania dla układów z polem elektromagnetycznym z równania ruchu: Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., i z lokalnej zachowawczości równanie cechowania: Upłynął czas przewidziany do wykonywania skryptów. i Upłynął czas przewidziany do wykonywania skryptów., oraz równania elektrodynamiki klasycznej, te równania są ze sobą sprzeczne, i rozwiązujemy je według twierdzenia Upłynął czas przewidziany do wykonywania skryptów.. Upłynął czas przewidziany do wykonywania skryptów.
Czy matematyka i fizyka według twierdzenia sprzeczności, a te dziedziny, w których nie uwzględniamy tego twierdzenia, są spełnione
edytujRównania szczególnej teorii względności (również całej fizyki), jak i matematyki, rozwiązujemy według twierdzenia Upłynął czas przewidziany do wykonywania skryptów.. To nie znaczy, że cała matematyka i fizyka dzisiejsza bez tego twierdzenia są niespełnione, dla tych dziedzin błędy Upłynął czas przewidziany do wykonywania skryptów. są bardzo małe, i dlatego tak jest, czyli bez twierdzenie sprzeczności cała matematyka i fizyka są w przybliżeniu spełnione.