miejsce zerowe funkcji, wyznaczanie miejsca zerowego
|
DEFINICJA
Miejscem zerowym funkcji nazywamy taki argument, dla którego wartość funkcji jest równa 0 [czyli ].
|
Na wykresie funkcji f miejscami zerowymi będą miejsca przecięcia wykresu funkcji z osią OX.
Funkcja
ma jedno miejsce zerowe dla
. Możemy to zaobserwować na wykresie albo rozwiązać równanie
:


Nie wszystkie funkcje posiadają miejsca zerowe. Pokazuje nam to kolejny przykład.
Funkcja
, gdzie
nie posiada miejsc zerowych. Widać to na wykresie:
Możemy również sprawdzić to algebraicznie:

Wyznaczmy miejsca zerowe funkcji
.

- możemy obustronnie dzielić przez 2 i otrzymujemy

Zatem
.
Znajdźmy wszystkie x dla których
, a
. Czyli:


- Korzystając, ze wzorów skróconego mnożenia
otrzymujemy:
, czyli
lub
.
Zatem
, gdy
lub
.
Wyznaczmy miejsca zerowe funkcji
.
Dla
(czyli
), funkcję
można wyrażać jako
. Ta funkcja nie ma miejsc zerowych w zbiorze
.
Dla
(czyli
), funkcję
można wyrażać jako
. Ta funkcja nie ma miejsc zerowych w zbiorze
.
Dla
(czyli
i
. funkcja
jest stała z wartością 0.
Zatem
, gdy
.