Szablon:UnikalnaStronaStart

 Dokumentacja szablonu [zobacz] [edytuj] [historia] [odśwież]

Użycie

Jest to szablon stronicowy otwierający stronę. Szablon {{UnikalnaStronaStart}} jest używany z szablonem {{UnikalnaStronaKoniec}}. Służy nadaniu kolumnie pierwszej od lewej rozmiaru 800 pikseli (licząc bez marginesów wewnętrznych i obramowania, z tymi to 822 pikseli), a po prawej jest wyświetlane menu ze sformatowanym spisem treści wbudowanym w Wikimedia, a na górze i dole menu nawigacyjne z paskiem, korzystając z szablonu {{Podręcznik}}. Szablon formatuje wszystko, co się znajduje się pomiędzy wspomnianymi szablonami.

Opis parametrów

Szablony {{UnikalnaStronaStart}} i {{UnikalnaStronaKoniec}} są używane bez żadnych argumentów.


Co do wstępów, zakończeń, nagłówków i stopek, to opis tych parametrów jest opisany na stronie szablonu {{StronaStart}}.

Przykład

Na samym początku modułu piszemy:

<noinclude>{{UnikalnaStronaStart}}</noinclude>

a na samym jego końcu:

<noinclude>{{UnikalnaStronaKoniec}}</noinclude>


Przykład
<noinclude>{{UnikalnaStronaStart}}</noinclude>
{{ArtykułSubst}}
<noinclude>{{Kreska nawigacja|{{AktualnaKsiążka}}|{{NastępnyArtykuł}}|{{PoprzedniArtykuł}}}}</noinclude>
<noinclude>{{UnikalnaStronaKoniec}}</noinclude>

Na stronie Szablon:Podręcznik/Ustawienia/Szablon:UnikalnaStronaStart/config są zmienne, by załadować odpowiedni artykuł. Ten szablon ustawień wygląda następująco:

{{#switch: {{{1}}}
 | poza_projektem = 
 |          tytuł = Podstawy teorii względności
 <!-- Zmienne, którą książkę i artykuł ma najpierw analizować
 -->
 |        książka = Szczególna teoria względności
 |        artykuł = Podstawy teorii względności
 <!-- Koniec
 -->
 |          autor = 
 |         autor1 = 
 |         sekcja = 
 |        sekcja2 = 
 |        sekcja3 = 
 |        sekcja4 = 
 |        sekcja5 = 
 |      poprzedni = 
 |       następny = 
 |      adnotacje = 
 |        tłumacz = 
 |  tłumacz_uwagi = 
 |    wikitłumacz = 
 |         stopka = 
 |       #default = 
}}

Parametr książka, czyli | książka = Szczególna teoria względności jest nazw książki, a artykuł, czyli | artykuł = Podstawy teorii względności, jest nazwą artykułu. Ten szablon ustawień jest przekierowaniem do szablonu: Szablon:Podręcznik/Ustawienia/Szablon:StronaStart/config.

Szablon {{PobierzUstawienia}} pobiera ustawienia, jaki artykuł i książkę ma symulować, zobacz dokumentację tego szablonu, tzn. {{PobierzUstawienia/opis}}.

Zmienna tytuł, czyli | tytuł = Podstawy teorii względności, przedstawia tytuł podręcznika, używany przez szablon {{Podręcznik}}.



Wynik
Podstawy teorii względności
Podstawy teorii względności
Spis treści

Podstawy transformacji Galileusza i Lorentza

Prawa transformacyjne położenia ciała w czasoprzestrzeni z jednego układu współrzędnych do drugiego są:

(2.1)

gdzie:

  • położenie ciała w starym układzie współrzędnych:, a także wielkości primowane w stosunku do poprzedniego mamy w postaci: jako położenie ciała w nowym układzie współrzędnych,
  • jeśli potraktować czas jako zerową współrzędną w (n+1)-wymiarowej czasoprzestrzeni.

Różniczka zmiany położenia danego ciała w czasie, korzystając z definicji różniczki zupełnej z analizy matematycznej jest przedstawiona:

(2.2)

Załóżmy, że macierz występująca w (2.2) jest stałą o charakterze macierzowym, stąd dojdziemy, że ona opisuje układy płaskie (tensor Minkowskiego ) i inercjalne (). Ciało, które ma położenie w starym układzie współrzędnych w czasoprzestrzeni , po przesunięciu tego układu o wektor , wtedy to ciało ma położenie , co tą transformację możemy pisać:

(2.3)
  • gdzie jest pewną stałą wektorową, a wektor jest to położenie ciała w układzie przed przesunięciem, a po przesunięciu.

Jak zachodzi w starym układzie współrzędnych (2.3) (bez primów) to podobnie jest dla nowego układu współrzędnych (tylko, że z primami).

Możemy wykorzystać (2.3) bez primów i z primami do wzoru na nieskończenie małą zmianę położenia ciała w czasoprzestrzeni w nowym układzie współrzędnych względem jego starego wychodząc ze wzoru (2.2) dla pamiętając, że zachodzi i , stąd:

(2.4)

W układzie według teorii Einsteina wynika, że równanie (2.2) nie zależy od tego o jaki wektor przesuniemy stary i wektor nowy układ współrzędnych, postać transformacji (2.1) dla transformujące się do i transformujące się do jest z dokładnością do stałej wektorowej taka sama (bo ta pochodna dla dowolnego jest stałą w (2.2), dlatego że zachodzi (2.4) (końcowy wzór)), zatem przedostatni wzór w (2.4) opisuje to samo, co wzór (2.2), pamiętając o udowodnionej stałości pochodnej: , wtedy ta postać transformacji spełnia zasadę jednorodności przestrzeni i czasu, a transformacja ze starego układu współrzędnych do nowego przedstawia się:

Definicja Transformacje tensora położenia w czasoprzestrzeni płaskiej (Def.  2.1)
Transformacje współrzędnych ciała ze starego układu odniesienia do nowego w przestrzeni n-wymiarowej, pamiętając, że czas jest współrzędną, przedstawiają się n+1 wzorami:
(2.5)
(2.6)
(2.7)
(2.8)

---------------------------------------------------------------------

(2.9)

Na podstawie wzoru (2.6), (2.7), (2.8) i (2.9) transformacja współrzędnych ze starego układu do nowego piszemy:

(2.10)
  • gdzie .

Wektor wodzący ciała odniesienia względem którego będziemy określać położenie w nowym układzie współrzędnych z oczywistych powodów jest równa zero, zatem wzór (2.10) możemy napisać:

(2.11)

Jeśli we wzorze (2.11) wyznaczymy wielkość i podstawimy go do wzoru (2.10), wtedy dostajemy wzór na transformację położenia ciała w starym układzie odniesienia na nowy układ. Wiedząc jakie jest położenie w przestrzeni ciała odniesienia w starym układzie odniesienia i w tym układzie możemy otrzymać położenie ciała w nowym układzie odniesienia i wiedząc jakie jest położenie ciała w czasoprzestrzeni (n+1)-wymiarowej w starym układzie współrzędnych możemy otrzymać położenie ciała w nowym układzie współrzędnych znając położenie stałe nowego układu współrzędnych względem starego układu współrzędnych, wtedy:

(2.12)

Wzór (2.12) jest spełniony, gdy stary i nowy układ współrzędnych są układami ogólnie nieprostokątnymi, w którym dla czasoprzestrzeni mamy .

Tożsamość na część macierzy transformacji M na Mx0

Wyprowadźmy wzór na wielkość Mx0 zakładając stałość macierzy , wiemy jednak przecież, że prędkość ciała odniesienia, względem którego będziemy określać położenie w nowym układzie współrzędnych jest napisana , i dalej zróżniczkujmy wzór (2.10) względem czasu w starym układzie współrzędnych i wyznaczmy z niego tą wspomnianą macierz:

(2.13)

Z końcowych rozważań (2.13) możemy napisać, że pierwszą kolumnę bez zerowego wiersza macierzy transformacji przedstawiamy:

 dla 
(2.14)

Błędy

Błędy należy zgłaszać na stronie Wikibooks:Kwestie techniczne.

Opis parametrów dla szablonu stronicowego otwierającego {{UnikalnaStronaStart}}, i zamykającego {{UnikalnaStronaKoniec}}.

Parametry szablonu[Zarządzaj danymi szablonu]

ParametrOpisTypStatus
wstępwstęp

Nagłówek szablonowy na główną częścią strony, części podręcznikowej, w tej samej kolumnie.

Niezbalansowany wikitekstopcjonalny
zakończeniezakończenie

Stopka szablonowa pod główną częścią strony, części podręcznikowej, w tej samej kolumnie.

Niezbalansowany wikitekstopcjonalny
nagłóweknagłówek

Nagłówek nad główną częścią podręcznikową, w danym wierszu

Niezbalansowany wikitekstopcjonalny
stopkastopka

Stopka pod główną częścią podręcznikową, w danym wierszu.

Niezbalansowany wikitekstopcjonalny
nagłówek stronynagłówek strony

Nagłówek w części, na górze, głównej podręcznikowej.

Niezbalansowany wikitekstopcjonalny
stopka stronystopka strony

Stopka w części, na dole, głównej podręcznikowej.

Niezbalansowany wikitekstopcjonalny
nagłówek lewynagłówek lewy

Nagłówek w przestrzeni lewej, na górze, wolnej części strony.

Niezbalansowany wikitekstopcjonalny
stopka lewastopka lewa

Stopka w przestrzeni lewej, na dole, wolnej części strony.

Niezbalansowany wikitekstopcjonalny
nagłówek prawynagłówek prawy

Nagłówek w przestrzeni prawej, na górze, wolnej części strony.

Niezbalansowany wikitekstopcjonalny
stopka prawastopka prawa

Stopka w przestrzeni prawej, na dole, wolnej części strony.

Niezbalansowany wikitekstopcjonalny

Zobacz też

Szablony konieczne