Matematyka ubezpieczeń życiowych/Wielorakie szkodowości

Matematyka ubezpieczeń życiowych
Wprowadzenie
  1. Elementy teorii oprocentowania Etap rozwoju: 100% (w dniu 16.07.2008)
  2. Model demograficzny Etap rozwoju: 100% (w dniu 18.06.2008)
  3. Podstawowe ubezpieczenia życiowe Etap rozwoju: 75% (w dniu 12.11.2008)
  4. Renty życiowe Etap rozwoju: 25% (w dniu 17.06.2008)
  5. Składki netto Etap rozwoju: 25% (w dniu 15.07.2008)
  6. Rezerwy składek netto Etap rozwoju: 25% (w dniu 16.07.2008)
  7. Składki i rezerwy brutto Etap rozwoju: 00% (w dniu 1.06.2008)
  8. Wielorakie szkodowości Etap rozwoju: 00% (w dniu 1.06.2008)
  9. Ubezpieczenia na wiele żyć Etap rozwoju: 50% (w dniu 11.11.2008)
  10. Fundusze emerytalne Etap rozwoju: 00% (w dniu 1.06.2008)
  11. Literatura i strony WWW Etap rozwoju: 100% (w dniu 1.06.2008)

Dodatki:

  1. Wymagania egzaminacyjne Etap rozwoju: 100% (w dniu 15.07.2008)

Inwalidztwo, utrata możliwości zarobkowania, choroba wymagająca długotrwałego kosztownego leczenia a także inne porównywalne zdarzenia losowe mogą być czasem podobnie dotkliwe dla rodziny ubezpieczonego jak jego śmierć. Zakłady ubezpieczeń na życie oferują obecnie ubezpieczenia uwzględniające również i takie zdarzenia losowe[1]. Aby móc zajmować się takimi ubezpieczeniami niezbędny jest matematyczny model uwzględniający wystąpienie jednego z kilku zdarzeń będących podstawą wypłaty świadczenia w odpowiedniej dla danej szkody wysokości. Jest to model szkodowości wielorakiej (ang. multiple decrement model).

Przypisy

edytuj
  1. Należy pamiętać, że jedna firma ubezpieczeniowa nie może oferować jednocześnie ubezpieczeń na życie (Dział I) i ubezpieczeń majątkowych (Dział II) jednak załącznik do ustawy wyliczając ryzyka z poszczególnych działów precyzuje, że do ubezpieczeń działu I zalicza się również ubezpieczenia wypadkowe i chorobowe, jako uzupełnienie pozostałych ubezpieczeń z tego działu. (http://isip.sejm.gov.pl/servlet/Search?todo=open&id=WDU20031241151)