Fizyka statystyczna/Potencjały termodynamiczne

Fizyka statystyczna
Fizyka statystyczna
Potencjały termodynamiczne

Licencja
Autor: Mirosław Makowiecki
Absolwent UMCS Fizyki Komputerowej Uniwersytetu Marii Curie-Skłodowskiej w Lublinie
Email: miroslaw(kropka)makowiecki(małpa)gmail(kropka)pl
Dotyczy: książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami.
Użytkownika książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami nie zwalnia z odpowiedzialności prawnoautorskiej nieprzeczytanie warunków licencjonowania.
Umowa prawna: Creative Commons: uznanie autorstwa, na tych samych warunkach, z możliwością obowiązywania dodatkowych ograniczeń.
Autor tej książki dołożył wszelką staranność, aby informacje zawarte w książce były poprawne i najwyższej jakości, jednakże nie udzielana jest żadna gwarancja, czy też rękojma. Autor nie jest odpowiedzialny za wykorzystanie informacji zawarte w książce, nawet jeśli wywołaby jakąś szkodę, straty w zyskach, zastoju w prowadzeniu firmy, przedsiębiorstwa lub spółki bądź utraty informacji, niezależnie czy autor (a nawet Wikibooks) został powiadomiony o możliwości wystąpienie szkód. Informacje zawarte w książce mogą być wykorzystane tylko na własną odpowiedzialność.


Potencjałami termodynamicznymi, nazywamy takie wielkości fizyczne, które posiadają różniczki zupełne, tzn. ich zmiana zależy od punktu początkowego do końcowego, a nie zależy po jakiej drodze układ podążał między tymi punktami. Różniczkami zupełnymi nazywamy wielkości, jeśli je można zapisać w sposób (2.8).

Definicje

edytuj

Poznamy tutaj wszystkie definicje potencjałów termodynamicznych.

Energia wewnętrzna

edytuj

Jest to potencjał termodynamiczny, określa miarę do wykonania pracy. Na miarę tej energii składa się energia oddziaływań między molekułami w tym ciele, energia potencjalna elektronów a jądrem, i inne nie wymienione w tym ciele energie. Energia wewnętrzna jest oznaczana przez U. Patrząc na wzór (1.4), który jest równaniem stanu, ogólnie rzecz biorąc energia wewnętrzna U posiada różniczkę zupełną, czyli różniczkę energii wewnętrznej można rozłożyć z definicji różniczki zupełnej podobnie jak w punkcie (3.1) do postaci:

(3.1)

Wzór powyższy na różniczkę energii wewnętrznej jest rozłożony w sumę pewnych infinitezymalnych składników, wykorzystując przy tym twierdzenie o różniczce zupełnej, względem parametrów , którymi są niezależne parametry równania stanu rozważanego układu. Jeśli chcemy policzyć zmianę energii wewnętrznej pomiędzy punktami A,B, to wystarczy znać tą energię w tychże punktach.

Entalpia

edytuj

Entalpia jest to potencjał termodynamiczny z definiowana jako sumę energii wewnętrznej i iloczynu ciśnienia panującego w układzie przez jego objętość i rozważamy ją jako:

(3.2)
  • gdzie:
  • - to entalpia.
  • - energia wewnętrzna
  • - ciśnienie w ciele w równowadze termodynamicznej
  • - objętość ciała

Entalpia posiada różniczkę zupełną, ze względu że energia wewnętrzna posiada różniczkę zupełną, czyli różniczkę entalpii można rozłożyć z definicji różniczki zupełnej:

(3.3)

Wzór (3.3) jest rozłożony w sumę pewnych infinitezymalnych składników, wykorzystując twierdzenie o różniczce zupełnej, względem parametrów , którymi są niezależne parametry równania stanu rozważanego układu. Jeśli chcemy policzyć zmianę entalpii pomiędzy punktami A,B, to wystarczy znać entalpię w tychże punktach.

Entropia

edytuj

Entropia określa miarę uporządkowania cząstek w danym układzie i wyraża się wzorem względem dwóch parametrów niezależnych z trzech, bo jest spełnione równanie (1.4), definicja infinitezymalnej zmiany entropii wyraża się wzorem (2.7). Entropia jest wielkością addywną i posiada różniczkę zupełną, czyli różniczkę entropii można rozłożyć z definicji różniczki zupełnej:

(3.4)

Wzór (3.4) jest rozłożony w sumę pewnych infinitezymalnych składników, wykorzystując twierdzenie o różniczce zupełnej, względem parametrów , którymi są niezależne parametry równania stanu rozważanego układu. Jeśli chcemy policzyć zmianę entropii pomiędzy punktami A i B, to wystarczy znać entropię w tychże punktach.

Energia swobodna

edytuj

Energia swobodna jest potencjał termodynamiczny określanym wzorem:

(3.5)

Energia swobodna składa się z różnicy energii wewnętrznej   oraz z energii związanej jako iloczyn temperatury układu przez entropie posiadanej przez układ.

Energia swobodna posiada różniczkę zupełną, bo energia wewnętrzna posiada różniczkę zupełną czyli różniczkę energii swobodnej można rozłożyć z definicji różniczki zupełnej:

(3.6)

Wzór (3.6) jest rozłożony w sumę pewnych infinitezymalnych wielkości, wykorzystując twierdzenie o różniczce zupełnej, względem parametrów , którymi są niezależne parametry równania stanu rozważanego układu. Jeśli chcemy policzyć zmianę energii swobodnej pomiędzy punktami A,B, to wystarczy znać energię swobodną w tychże punktach.

Gibbsa-entalpia swobodna

edytuj

Potencjał Gibbsa lub entalpia swobodna, której definicja jest jako różnicę entalpi posiadanej przez ciało i energii związanej, jest określona:

(3.7)

Potencjał Gibbsa   posiada różniczkę zupełną, ponieważ jak wcześniej udowodniliśmy entalpia posiada różniczkę zupełną, zatem różniczkę entropii można rozłożyć z definicji różniczki zupełnej do postaci:

(3.8)

Wzór (3.8) jest rozłożony w sumę pewnych infinitezymalnych wyrazów, wykorzystując twierdzenie o różniczce zupełnej, względem parametrów , którymi są niezależne parametry równania stanu rozważanego układu. Jeśli chcemy policzyć zmianę potencjału Gibbsa pomiędzy punktami A i B, to wystarczy znać potencjał Gibbsa w tychże punktach.

Wyprowadzenie związków między potencjałami termodynamicznymi

edytuj

Energia wewnętrzna

edytuj

Różniczkę energii wewnętrznej jest określana według pierwszej zasady termodynamiki z definicją infinitezymalnej pracy (2.6) i infinitezymalnego ciepła dostarczonego do naszego układu (2.7) uwzględniając definicję różniczki potencjału termodynamicznego energii wewnętrznej, mówiąca ile cząstek wchodzi do układu z otoczenia, co jest też związane ze zmiana energii wewnętrznej układu, oczywiście jest, że:

(3.9)

Energię wewnętrzna posiada różniczkę zupełną, tzn. z definicji różniczki zupełnej, można rozłożyć tą wielkość względem entropii, objętości i liczby cząstek jaki posiada nasz badany układ:

(3.10)

Porównujemy wzór (3.9) ze wzorem (3.10), które oznaczają to samo, ale współczynniki przy różniczkach przy drugim wzorze są zupełne inaczej napisanej za pomocą pochodnych cząstkowych niż w pierwszym wzorze na różniczkę energii wewnętrznej, zatem na podstawie porównania wspominanych tożsamości przyjmujemy wzory na zmienne termodynamiczne:

(3.11)
(3.12)
(3.13)
(3.14)

Entalpia

edytuj

Różniczkę entalpii można zapisać, korzystając przy tym (3.1) (definicji etalpi) i podstawiając do niego tożsamość różniczkową (3.1) (definicji różniczki energii wewnętrznej), można tą naszą różniczkę rozpisać ją, jak się przekonamy względem różniczki zupełnej entropii, ciśnienia i liczby cząstek:


(3.15)

Ze wzoru (3.16) wynika wzór zdefiniowanych na różniczkach:

(3.16)

Entalpia posiada różniczkę zupełną, tzn. z definicji różniczki zupełnej, można rozłożyć tą różniczkę względem entropii, ciśnienia i liczby cząstek jaki posiada nasz badany układ:

(3.17)

Porównujemy wzór (3.17) ze wzorem (3.16), które oznaczają to samo, ale współczynniki przy różniczkach przy drugim wzorze są zupełne inaczej napisane, zdefiniowane za pomocą pochodnych cząstkowych niż w pierwszym wzorze na różniczkę entalpii, zatem na podstawie porównania wspomnianych tożsamości przyjmujemy wzory na zmienne termodynamiczne:

(3.18)
(3.19)
(3.20)
(3.21)

Energia swobodna

edytuj

Różniczkę energii swobodnej można zapisać przy pomocy rozpisanej (3.9) różniczki energii wewnętrznej, zatem:

Różniczkę energii swobodnej można zapisać, korzystając przy tym (3.9) i podstawiając do niego tożsamość różniczkową (3.6) (definicji różniczki energii wewnętrznej), można tą naszą różniczkę rozpisać ją, jak się przekonamy względem różniczki zupełnej entropii, temperatury i liczby cząstek:

(3.22)

Wzór (3.18) można zapisać w sposób:

(3.23)

Entalpia posiada różniczkę zupełną, tzn. z definicji różniczki zupełnej, można rozłożyć tą różniczkę względem entropii, ciśnienia i liczby cząstek jaki posiada nasz badany układ:

(3.24)

Porównujemy wzór (3.24) ze wzorem (3.23), które oznaczają to samo, ale współczynniki przy różniczkach przy drugim wzorze są zupełne inaczej napisane za pomocą pochodnych cząstkowych niż w pierwszym wzorze na różniczkę energii swobodnej, zatem na podstawie porównania wspomnianych tożsamości przyjmujemy wzory na zmienne termodynamiczne:

(3.25)
(3.26)
(3.27)
(3.28)

Potencjał Gibbsa

edytuj

Różniczkę na potencjał Gibbsa można zapisać, korzystając przy tym (3.7) (definicji potencjału Gibbsa) i podstawiając do niego tożsamość różniczkową (3.16) (definicji różniczki etalpii), można tą naszą różniczkę rozpisać ją, jak się przekonamy względem różniczki zupełnej ciśnienia, temperatury i liczby cząstek:

(3.29)

Ze wzoru (3.30) wynika wzór zdefiniowanych na różniczkach:

(3.30)

Entalpia posiada różniczkę zupełną, tzn. z definicji różniczki zupełnej, można rozłożyć tą różniczkę względem entropii, ciśnienia i liczby cząstek jaki posiada nasz badany układ:

(3.31)

Porównujemy wzór (3.31) ze wzorem (3.30), które oznaczają to samo, ale współczynniki przy różniczkach przy drugim wzorze są zupełne inaczej zdefiniowane za pomocą pochodnych cząstkowych niż w pierwszym wzorze na różniczkę potencjału Gibbsa, zatem na podstawie porównania wspominanych tożsamości przyjmujemy wzory na zmienne termodynamiczne:

(3.32)
(3.33)
(3.34)
(3.35)

Wzory między potencjałami a parametrami mierzalnymi

edytuj

Zbierając wszystkie wyniki, to z definicji potencjałów termodynamicznych, tzn. energii wewnętrznej, entalpii, energii swobodnej i potencjału Gibbsa, można wyznaczyć z tychże parametrów ekstensywnych policzyć parametry termodynamiczne ekstensywne (intensywne) wedle sposobu:

Energia wewnętrzna
(3.36)
(3.37)
(3.38)
(3.39)
Entalpia
(3.40)
(3.41)
(3.42)
(3.43)
Energia swobodna
(3.44)
(3.45)
(3.46)
(3.47)
Potencjał Gibbsa
(3.48)
(3.49)
(3.50)
(3.51)

Zależność między potencjałem chemicznym μ i czasowym ω, a potencjałem Gibbsa

edytuj

Rozpiszemy różniczkę potencjału Gibbsa względem zmiennych , , i , oczywiście jest, że różniczka zupełna funkcji Gibbsa (ten potencjał posiada różniczkę zupełną) można z definicji tejże różniczki zapisać wedle:

(3.52)

Jeśli we wzorze (3.52) będziemy rozpatrywać stałe ciśnienie (układ jest w równowadze mechanicznej) i stałą temperaturę w układzie (układ jest w równowadze termodynamicznej), to wtedy dwa pierwsze wyraz znika, a pozostaje tylko trzeci, który jest zależny od potencjału chemicznego i różniczki liczby cząstek jakie posiada układ, i czwarty, który jest zależny od potencjału czasowego i różniczki czasu, zatem wspomniane równanie przechodzi w:

(3.53)

Wzór (3.53) przy postawionych warunkach brzegowych możemy przepisać dla przejrzystości dalszych rozważań w postaci różniczkowej:

(3.54)

Całkujemy wzór (3.54) obustronnie z prawej strony względem ilości cząstek przy stałym potencjale chemicznym i czasowym, a z lewej względem potencjału Gibbsa, wtedy dostajemy tożsamość ze stałą bliżej nieokreśloną:

(3.55)

Przyjmujemy, że stała jest równa zera w równaniu (3.55), bo potencjał Gibbsa nie ma wartości absolutnej, tylko jest określona z dokładnością do pewnej stałej, czyli możemy wyzerować tą stałą, nie zmniejszając ogólności znaczenia tego potencjału ekstensywengo G, czyli przyjmijmy const=0, która występuje we wzorze (3.55), wtedy dochodzimy do wniosku:

(3.56)

Równanie (3.56) jest spełnione w stanie równowagi termodynamicznej, tzn. gdy temperatura i ciśnienie w układzie nie zmieniają się, tylko liczba cząstek i czas mogą się zmieniać zgodnie (3.54). W końcu w równanie (3.56) na potencjał Gibbsa jest zależny od potencjału chemicznego i ilości cząstek w danej fazie oraz potencjału czasowego i czasu układu statystycznego.

Prawa Maxwella w statystyce fizycznej

edytuj

Potencjały termodynamiczne posiadają różniczkę zupełną, zatem z definicji różniczki zupełnej powinno zachodzić:

(3.57)

Wzory Maxwella można wyprowadzić korzystając z warunku, by różniczka była różniczką zupełną (3.57) oraz ze wzorów w rozdziale"Wzory między potencjałami a parametrami mierzalnymi", wtedy możemy napisać związki termodynamiczne, które są nazywane związkami (prawami) Maxwella :

(3.58)
(3.59)
(3.60)
(3.61)

Łatwy sposób zapamiętania związków między potencjałami termodynamicznymi a także praw Maxwella

edytuj
(Rys. 3.1) Rysunek pozwala zapamiętać w łatwy sposób związki między potencjałami termodynamicznymi a parametrami nie będące potencjałami termodynamicznymi a także prawa Maxwella w fizyce statystycznej

Jak zapamiętać związki między potencjałami termodynamicznymi, a mianowicie tak. Mamy cztery potencjały termodynamiczne, tzn. U,H,G,F. Jak widzimy na rysunku z prawej i lewej strony lub góra i dół występują parametry mierzalne p,V,T,S. A więc te wielkości, których potencjał termodynamiczny tworzy pochodną występujący w środku danego boku według naszego rysunku obok, względem wielkości mierzalnej występującym z prawej i z lewej strony. W ten sposób dodarliśmy do zmiennej mierzalnej , jeśli przy tej zmiennej występuje strzałka to ta pochodna cząstkowa ma wartość ujemną, a jego wartość występuje na początku wektora, znak dodatni, gdy dodarliśmy do miejsca, który jest początkiem wektora, a wartość tej pochodnej występuje na końcu tego wektora. Jak zapamiętać prawa Maxwella, a mianowicie tak. Na obrzeżach występują cztery wektory, początek (koniec) tego wektora wskazuje względem jakiej wielkości będziemy różniczkować, a koniec (początek) jaką wielkość różniczkujemy. Jeśli wielkość którą różniczkujemy znajduje się na początku wektora, to wtedy znak naszego wyrażenia jest dodatni, a w przeciwnym wypadku ujemny. To wyrażenie jest równe tak samo nierozpatrywany wyrażeniu dla boku przeciwległego. Widzimy, że za pomocą takiej metody można łatwo wywnioskować znak (minus lub plus) w tożsamości Maxwella.