Szczególna teoria względności/Podstawy teorii względności

Szczególna teoria względności
Szczególna teoria względności
Podstawy teorii względności

Licencja
Autor: Mirosław Makowiecki
Absolwent UMCS Fizyki Komputerowej Uniwersytetu Marii Curie-Skłodowskiej w Lublinie
Email: miroslaw(kropka)makowiecki(małpa)gmail(kropka)pl
Dotyczy: książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami.
Użytkownika książki, do której należy ta strona, oraz w niej zawartych stron i w nich podstron, a także w nich kolumn, wraz z zawartościami nie zwalnia z odpowiedzialności prawnoautorskiej nieprzeczytanie warunków licencjonowania.
Umowa prawna: Creative Commons: uznanie autorstwa, na tych samych warunkach, z możliwością obowiązywania dodatkowych ograniczeń.
Autor tej książki dołożył wszelką staranność, aby informacje zawarte w książce były poprawne i najwyższej jakości, jednakże nie udzielana jest żadna gwarancja, czy też rękojma. Autor nie jest odpowiedzialny za wykorzystanie informacji zawarte w książce, nawet jeśli wywołaby jakąś szkodę, straty w zyskach, zastoju w prowadzeniu firmy, przedsiębiorstwa lub spółki bądź utraty informacji, niezależnie czy autor (a nawet Wikibooks) został powiadomiony o możliwości wystąpienie szkód. Informacje zawarte w książce mogą być wykorzystane tylko na własną odpowiedzialność.


Podstawy transformacji Galileusza i Lorentza edytuj

Prawa transformacyjne położenia ciała w czasoprzestrzeni z jednego układu współrzędnych do drugiego są:

(2.1)

gdzie:

  • położenie ciała w starym układzie współrzędnych:, a także wielkości primowane w stosunku do poprzedniego mamy w postaci: jako położenie ciała w nowym układzie współrzędnych,
  • jeśli potraktować czas jako zerową współrzędną w (n+1)-wymiarowej czasoprzestrzeni.

Różniczka zmiany położenia danego ciała w czasie, korzystając z definicji różniczki zupełnej z analizy matematycznej jest przedstawiona:

(2.2)

Załóżmy, że macierz występująca w (2.2) jest stałą o charakterze macierzowym, stąd dojdziemy, że ona opisuje układy płaskie (tensor Minkowskiego ) i inercjalne (). Ciało, które ma położenie w starym układzie współrzędnych w czasoprzestrzeni , po przesunięciu tego układu o wektor , wtedy to ciało ma położenie , co tą transformację możemy pisać:

(2.3)
  • gdzie jest pewną stałą wektorową, a wektor jest to położenie ciała w układzie przed przesunięciem, a po przesunięciu.

Jak zachodzi w starym układzie współrzędnych (2.3) (bez primów) to podobnie jest dla nowego układu współrzędnych (tylko, że z primami).

Możemy wykorzystać (2.3) bez primów i z primami do wzoru na nieskończenie małą zmianę położenia ciała w czasoprzestrzeni w nowym układzie współrzędnych względem jego starego wychodząc ze wzoru (2.2) dla pamiętając, że zachodzi i , stąd:

(2.4)

W układzie według teorii Einsteina wynika, że równanie (2.2) nie zależy od tego o jaki wektor przesuniemy stary i wektor nowy układ współrzędnych, postać transformacji (2.1) dla transformujące się do i transformujące się do jest z dokładnością do stałej wektorowej taka sama (bo ta pochodna dla dowolnego jest stałą w (2.2), dlatego że zachodzi (2.4) (końcowy wzór)), zatem przedostatni wzór w (2.4) opisuje to samo, co wzór (2.2), pamiętając o udowodnionej stałości pochodnej: , wtedy ta postać transformacji spełnia zasadę jednorodności przestrzeni i czasu, a transformacja ze starego układu współrzędnych do nowego przedstawia się:

Definicja Transformacje tensora położenia w czasoprzestrzeni płaskiej (Def.  2.1)
Transformacje współrzędnych ciała ze starego układu odniesienia do nowego w przestrzeni n-wymiarowej, pamiętając, że czas jest współrzędną, przedstawiają się n+1 wzorami:
(2.5)
(2.6)
(2.7)
(2.8)

---------------------------------------------------------------------

(2.9)

Na podstawie wzoru (2.6), (2.7), (2.8) i (2.9) transformacja współrzędnych ze starego układu do nowego piszemy:

(2.10)
  • gdzie .

Wektor wodzący ciała odniesienia względem którego będziemy określać położenie w nowym układzie współrzędnych z oczywistych powodów jest równa zero, zatem wzór (2.10) możemy napisać:

(2.11)

Jeśli we wzorze (2.11) wyznaczymy wielkość i podstawimy go do wzoru (2.10), wtedy dostajemy wzór na transformację położenia ciała w starym układzie odniesienia na nowy układ. Wiedząc jakie jest położenie w przestrzeni ciała odniesienia w starym układzie odniesienia i w tym układzie możemy otrzymać położenie ciała w nowym układzie odniesienia i wiedząc jakie jest położenie ciała w czasoprzestrzeni (n+1)-wymiarowej w starym układzie współrzędnych możemy otrzymać położenie ciała w nowym układzie współrzędnych znając położenie stałe nowego układu współrzędnych względem starego układu współrzędnych, wtedy:

(2.12)

Wzór (2.12) jest spełniony, gdy stary i nowy układ współrzędnych są układami ogólnie nieprostokątnymi, w którym dla czasoprzestrzeni mamy .

Tożsamość na część macierzy transformacji M na Mx0 edytuj

Wyprowadźmy wzór na wielkość Mx0 zakładając stałość macierzy , wiemy jednak przecież, że prędkość ciała odniesienia, względem którego będziemy określać położenie w nowym układzie współrzędnych jest napisana , i dalej zróżniczkujmy wzór (2.10) względem czasu w starym układzie współrzędnych i wyznaczmy z niego tą wspomnianą macierz:

(2.13)

Z końcowych rozważań (2.13) możemy napisać, że pierwszą kolumnę bez zerowego wiersza macierzy transformacji przedstawiamy:

 dla 
(2.14)